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BEVEZETŐ 

 A biometrika és az azonosítástechnika az utóbbi évtizedben egyre nagyobb teret hódít. 

Egyre több biometrikai jegy megbízhatósága és egyedisége bizonyított. A legelterjedtebb és a 

legnagyobb hagyományokkal rendelkező azonosítási forma azonban továbbra is az 

ujjlenyomat-vizsgálat. A kriminológiai felhasználási lehetőségeket nem kell ecsetelnünk, 

azonban legalább ennyire lényeges a polgári, kereskedelmi célú azonosítástechnikai 

jelentősége (pl. Online Banking, beléptető rendszerek). 

 A tökéletes ujjlenyomat-felismerő rendszerre azonban még várni kell. Jelen 

pillanatban egyetlen 100 százalékosan megbízható rendszer sem működik. Természetesen a 

kutatások igen intenzíven folynak, jelen munkánkban mi is megkíséreltünk hozzájárulni a 

terület fejlődéséhez.  

 Célunk a létező ujjlenyomat-felismerési eljárások áttekintése, rendszerezése, valamint 

egy újabb módszer kidolgozása volt. A dolgozatot is ennek megfelelően strukturáltuk, azaz az 

első fejezetben magát a biometrikát definiáljuk, majd részletesen ismertetjük az ujjlenyomat 

tulajdonságait, a felismerésben alapvető szerepet betöltő lokális (minutia) és globális (delta, 

mag) jegyeket és a klasszikus osztályozási formákat, melyek a katalogizálás megkönnyítését 

szolgálják. Itt kap helyet a szakirodalomban megjelenő eljárások és módszerek ismertetése. A 

két alaptechnikát, a binarizáláson alapuló, illetőleg a direkt szürkeárnyalatú felismerési 

eljárásokat részletekbe menően tárgyaljuk.  

 A modern ujjlenyomat-felismerést automatizált rendszerek végzik, melyek alapvető 

funkciói az ujjlenyomatkép minőségi javítása, osztályozás, az azonosításban használt jegyek 

meghatározása (feature extraction), az adatok tárolása valamint az összehasonlítások 

megvalósítása. Az általunk javasolt rendszer struktúrája ezzel azonos. Ennek megfelelően az 

első lépést számunkra is a második fejezetben bemutatott képminőség-javítási eljárás jelenti. 

Egy korszerű technikát alkalmazunk, apróbb változtatásokat eszközölve, az A.K. Jain és S. 

Pankanti szerzőpáros által kifejlesztett Gábor szűrős eljárást. A módszer egy olyan adaptív 

anizotropikus szűrőt használ, mely magvát a lokális redőfrekvencia- és orientáció- 

paramétereknek megfelelően folyamatosan állítjuk. Az általunk eszközölt változtatás a 

legjelentősebb paraméter, az orientációkép meghatározására terjed ki. 

 A második lépés az ujjlenyomatok osztályozása, mely tulajdonképpen a keresések 

könnyítését és az adatbázis felosztását szolgálja. Ezen folyamatot a harmadik fejezetben 
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ismertetjük. Az osztályozás alapját az ujjlenyomaton található redők mintázata képezi. A 

mintázatok ábrázolását a redők irányainak függvényében végezzük. Az osztályozást egy 

általunk épített, a hiba hátraterjedésének módszerével tanított többrétegű perceptron valósítja 

meg. 

 Az ujjlenyomatok összehasonlítása, mint ez a negyedik fejezetből kiderül, a lokális 

jegyek azaz minutiák alapján történik. Az összehasonlítás legnagyobb problémáját a rotáció- 

és transzláció- invariancia képezi. A jelenleg alkalmazott rendszerek túlnyomó többsége a 

globális jegyek alapján igyekszik esztimálni az említett paramétereket, és ennek 

függvényében korrigálja a képet. Ez azonban a rendszerek megbízhatóságának csökkenéséhez 

vezet.  Ezzel szemben mi javasoltunk egy alternatív módszert, mely nem tesz kísérletet a 

rotáció és transzláció mértékének meghatározására, hanem egy olyan reprezentálási formát 

alkalmaz, mely ezen paraméterekre nézve invariáns. Az említett ábrázolási mód, nem más, 

mint egy szimbólumsorozat, mely alapját a különböző minutiákat összekötő szakaszok hossza 

és az ezek által bezárt szög képezi. Az így kapott szimbólumsorozatok összehasonlítása 

azonban komputacionális szempontból igen költséges, ezért kifejlesztettünk egy gyorsított 

összehasonlító algoritmust, melyet szintén a negyedik fejezetben ismertetünk.  

 A dolgozat előbb említett fejezeteiben csupán az eljárások elméleti hátterét tárgyaljuk, 

a gyakorlati megvalósításokat a programozói dokumentációban taglaljuk. Ennélfogva az 

ötödik fejezet szerves része a dolgozatnak. A szűrési technikák megvalósítása, valamint a 

többrétegű perceptron tanítási algoritmusának ismertetése mellett a már említett gyorsított 

összehasonlító algoritmust is részletezzük. Ugyancsak ebben a fejezetben kapott helyet a 

javasolt továbbfejlesztési módok és lehetőségek ismertetése. 

 Összegezve az elmondottakat, sikerült létrehoznunk egy rotáció és transzláció 

invariáns, rendkívül rossz minőségű ujjlenyomatokkal is dolgozni képes, automatizált 

ujjlenyomat-felismerő rendszert. 
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1. BIOMETRIKA ÉS AZ UJJLENYOMAT-FELISMERÉS 

1.1 BIOMETRIKA 

 A biometrika az egyén bizonyos fiziológiai illetve pszichológiai jellemzőinek mérését 

jelenti. Ez főként azonosítási célokat szolgál, ezért a biometrika lassan összeolvad az 

azonosítástechnika fogalmával. A mérésekben felhasznált jegyek skálája igen széles: 

antropológiai jellemzők (csontozat, testfelépítés, koponyaforma, stb.),  írisz, testillat, DNS, 

arc, hang, fülcimpa, talp, gépelési dinamika, aláírás, mozgás-analízis, stb. [4].  

 Egy biometrikai azonosító rendszer több funkcióval rendelkezik, legfontosabbak a 

jellemzők mérése valamilyen szenzor segítségével, a speciális jellemzők kivonása (ezek 

alapján dönthető el két minta azonossága), és összehasonlítás (két különböző mintáról eldönti, 

azonosak e). A biometrikai azonosítási rendszerek egyre nagyobb teret hódítanak, polgári célú 

alkalmazásuk egyre nagyobb (beléptető-rendszerek, banki azonosítási rendszerek, stb.). 

 Az ujjlenyomat a leginkább elterjedt, és a legszélesebb körben elfogadott biometrikai 

jegy. Világszerte minden bűnüldözési és ítélethozó szerv elfogadja az ujjlenyomatot 

bizonyítékként, a polgári célú felhasználtsága is az ujjlenyomatnak a legnagyobb.  

Több érv szól e széleskörű felhasználás mellett, többek között az egyediség, az érzékelés 

egyszerűsége, időbeni állandóság. 

1.2 TÖRTÉNELMI ÁTTEKINTÉS 

 Az ujjlenyomatok azonosítás céljából történő felhasználása meglehetősen nagy múltra 

tekint vissza. Az ókori Babilóniában agyagtáblákon találtak hitelesítő lenyomatokat, Kínában 

pecséteken,  Perzsiában hivatalos papírokon.  

 A modern ujjlenyomat-vizsgálat (dactyloscopia) alapjait Sir Francis Galton helyezte le 

„Fingerprints” című munkájában 1892-ben. Ő volt az első, aki felismerte az ujjlenyomatok 

egyediségét (még az egypetéjű ikrek ujjlenyomatai is különbözőek) valamint időbeni 

állandóságát (az ujjlenyomat mintázata még a születés előtt kialakul és a baleseteket 

leszámítva az egyén haláláig nem változik). Az ujjlenyomatok azonosítására ő vezette be a 

minutiák fogalmát [1,2], ezek az úgynevezett lokális jellemzők, melyek tulajdonképpen a 

mintázaton található jegyek, úgymint a végződés és a bifurkáció. 
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1. ábra:  Minutiák: végződés és  bifurkáció 

 

 Ő volt az első ujjlenyomat-osztályozási rendszer megalkotója is. 

 1901-ben Angliában és Walesben bevezették az ujjlenyomatok azonosításának 

bűnüldözési célú alkalmazását. Az alkalmazott osztályozási rendszer készítője Sir Edward 

Richard Henry, aki Galton módszerére építette saját rendszerét. Az angol nyelvű államokban 

nagyrészt még mindig ezt a rendszert használják. 

1.3 STRUKTURÁLIS VAGY GLOBÁLIS JEGYEK 

 Ezek a jegyek első ránézésre megállapíthatóak, azonosításban nem, csak az 

osztályozásban van szerepük [1,2]. Ide tartozik az ujjlenyomat redőinek mintázata (később 

kifejtve), valamint a mag (illetőleg közép) és delta pont. A magpont, nagyjából az ujjlenyomat 

közepén található, a redővonalak ebben a pontban megközelítőleg 180 fokos kanyart írnak le. 

A delta pont jellegzetessége, hogy a redővonalak Y betűhöz hasonló hármas kereszteződésben 

találkoznak. 

 

 
2. ábra: Delta és magpont az ujjlenyomaton 
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Ide tartozik még a redőszám, ami nem más mint a delta és magpontokat összekötő 

képzeletbeli szakaszt metsző redők száma. Sok esetben ez nem egyértelműen meghatározható. 

A meghatározást nehezítő tényezők lehetnek a mag illetve deltapont hiánya esetleg ezek 

többszörös jelenléte. Még az ideális esetben (egy mag és egy deltapont) sem mindig 

egyértelmű a redőszám, ezért általában +/-2 vonalas eltérést engedélyeznek.  

1.4 OSZTÁLYOZÁS 

 Az osztályozás célja a rendszerezés és a visszakeresések megkönnyítése és gyorsítása. 

A Henry Osztályozási Módszer (Henry Classification System) [3] alapját négy csoport képezi, 

ezek az ív, csigavonal, jobb és balhurok: 

   
3. ábra: A legfontosabb ujjlenyomat típusok: ív, csigavonal, hurok 

 

 A Henry Osztályozási Rendszer természetesen ennél sokkal bonyolultabb, ennek 

ismertetésére most nem térünk ki. 

 Egy kor- és egyszerűbb módszer az NCIC osztályozás. Ez a módszer is a strukturális 

jegyeket alkalmazza, minden egyénhez hozzárendelnek egy húszjegyű karaktersorozatot, 

minden ujjat két karakter szimbolizál, ami a típus kódja illetőleg hurok vagy csigavonal 

esetén a redőszám. Más típusok esetében ez azért nem releváns, mert egyrészt hiányozhat a 

delta illetőleg magpont, vagy akár kettő is lehet belőlük.   

1.5 UJJLENYOMATOK ÉRZÉKELÉSE 

 Alapvetően két esetről beszélhetünk, az egyik az  amikor a vizsgált alanytól veszünk 

mintát, a második az úgynevezett latens ujjlenyomatok érzékelése. A latens ujjlenyomatok a 

különböző tárgyak érintése folytán a tárgy felületén maradó, szabad szemmel nem feltétlenül 

érzékelhető nyomatok, melyeket különböző módszerekkel tesznek láthatóvá. Ha egyenesen az 

alanytól veszünk mintát, két alapvető lehetőségünk van, az egyik a klasszikus tintalenyomat 

(az ujjat pecsétpárnára majd papírra nyomjuk) másik pedig a „live-scan” (egy speciális 
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„optical frustrated total internal reflection” szkenner segítségével). A tintalenyomat nagy 

hiányossága, hogy az ujjlenyomat egyes részei elmosódnak, a redők közé befolyt tinta is 

korrumpálhatja a végeredményt, álredőket képezve. 

1.6 AUTOMATIZÁLT FELISMERŐ RENDSZEREK. 

 A különböző osztályozási eljárások egyszerűbbé teszik ugyan az ujjlenyomat 

visszakeresését, de egy nagyobb adatbázis esetében (pl a F.B.I <<Federal Bureau of 

Investigation>> adatbázisa 7 millió lenyomatot tartalmaz), ez még nem elég. Szükség volt a 

keresések automatizálására. 

 Egy automatizált ujjlenyomat-felismerő rendszer (AFIS- Automated Fingerprint 

Identification System) legfontosabb feladatai közé tartozik az ujjlenyomat típusának 

meghatározása, tárolása és beazonosítása [4,5]. Lehet polgári vagy bűnüldözési jellegű. 

Futószalagként is felfogható. Első lépés az ujjlenyomat bevitele vagy érzékelése (lásd 

később), majd a kép minőségi javítása (a beviteli eszközök hiányosságai által okozott 

torzulások kiküszöbölése), a globális jellemzők megállapítása és osztályozás, a lokális 

jellemzők (minutiák) lokalizálása, majd a feladatnak megfelelően az adatbázishoz csatolás 

illetőleg összehasonlítás a már létező bemenetekkel. 

 Az ujjlenyomatok tárolására két alapvető módszer létezik, egyik a teljes értékű, 

melynek során a teljes felvételt tárolják, másik pedig az információvesztéses, amikor csupán a 

lokális jellemzőket illetőleg ezek kódolt formáját tárolják. Az információvesztéses tárolási 

módszer esetében a lenyomat rekonstrukciója teljességgel lehetetlen [6]. 

 

Képminőség javítás és minutia lokalizálás. 

 A képminőség javítás az egyik legmeghatározóbb lépés, hiszen a bemeneti adatok 

megbízhatósága az egyik legbefolyásolóbb tényező. Alapvetően két módszert 

különböztethetünk meg: a binarizáció-véknyítást valamint  a direkt szürkeárnyalatú (direct 

grayscale) javítást.  

 A binarizáció-véknytás [8, 9] módszer is több lépésből áll. Rendszerint az első lépés 

valamilyen szűrő alkalmazása, a szennyeződések (pl. só-bors) eltávolítása végett. Ez lehet egy 

egyszerű Gauss, vagy Wiener. Második lépésben kerül sor az adaptív hisztogramm 

kiegyenlítésre, mely célja a kontrasztnövelés illetőleg a megvilágítás változékonyságának 

megszűntetése. A kiegyenlítést általában 11x11 ablakokban lokálisan végzik. A 

kontrasztnövelésnek köszönhetően egyes elmosódott képrészletek hangsúlyosabbá, 

könnyebben érzékelhetőkké válnak. 
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 Megjegyezzük, hogy az első és második lépés sorrendje az igényeknek megfelelően 

felcserélhető. 

 A Gauss szűrés nem más, mint egy diszkrét Gauss mag konvolúciója az eredeti 

képpel. A diszkrét Gauss mag képzését a 2.5 fejezetben tárgyaljuk. Mit is jelent 

tulajdonkeppen a konvolúció. Legyen egy szürkeárnyalatú kép az I(m,n) mátrix, melynek 

egyes elemei a pixelek intenzitását jelentik. A diszkrét Gauss mag egy négyzetes mátrix, 

jelölje ezt G(ng,ng), ahol ng a Gauss mag mérete. Legyen tg a mátrix elemeinek összege, azaz: 
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 A konvolúció során az I kép minden egyes pixelének értékét megváltoztatjuk, a 

környezetét figyelembe véve: 
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 A Wiener szűrő, a Gauss – hoz hasonlóan a környezetet figyelembe véve származtatja 

a vizsgált pixel új intenzitásértékét. Egy adott I(i,j) pixel környezetét alkotó n x n ablakban (az 

ablak középpontja i,j) kiszámítjuk az intenzitásértékek szórását és várható értékét, legyen ez 

σ2 és µ. A szemét feltételezett szórása legyen υ2. Ekkor a szűrés eredményeképp kapott  W  

kép a következőképpen számítható: 
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 Az adaptív hisztogramm kiegyenlítés,  ugyancsak a környezetet figyelembe véve 

határozza meg az új intenzitásértékeket, de az előbbi szűrőktől eltérő módon, nem rendelünk 

minden egyes pixelhez egy ablakot, hanem a képet indításkor felosztjuk n x n  méretű 

ablakokra, és a változtatásokat ezen ablakok szintjén, lokálisan végezzük. A művelet célja, 

hogy az egyes pixelintenzitások eloszlása minden ablakban egyenletes legyen. Az 

intenzitások tulajdonképpen 0 és 255 között vehetnek fel értékeket. Legyen k egy 

intenzitásszint, 2550 ≤≤ k , a kiválasztott ablakban található k intenzitású pixelek számát 

jelölje nk , az ablak pixeleinek száma n2 , ekkor egy k intenzitáshoz hozzárendelt sk új 

intenzitásérték :   
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Tehát minden k intenzitású pixel intenzitását sk – ra cseréljük. 

A harmadik lépés lenne a binarizáció, melyet szintén adott méretű ablakokban 

lokálisan végzünk, a képlet egyszerű, a kiválasztott régióban megkeressük az intenzitások 

várható értékét, minden ennél nagyobb intenzitású képpont fehér, minden ennél alacsonyabb 

intenzitású pedig fekete lesz. Tehát legyen N(w,w) egy w x w ablak az I(m,n) szürkeárnyalatú 

képben. A 0 intenzitás a fekete, a 255 a fehér megfelelője. Legyen az N ablakban az 

intenzitások várhatóértéke µ. Ekkor a B bináris kép, az I-hez hasonlóan ablakokból épül fel, 

egy adott N –nek megfelelő Bn(w,w) ablak pixeleinek kiszámítása: 

 

⎩
⎨
⎧

≤
>

=
,),(  ha    ,0

,),(  ha    , 255
),(

µ
µ

jiN
jiN

jiB      (1.4) 

 
 Elméletileg a binarizáció után kapott képen minden redőhöz tartozó képpont fekete és 

minden völgyhöz tartozó képpont fehér. 

 Következik a véknyítás. Ennek célja, hogy a több pixel vastagságú redővonalakat 

redukálja egy 1 pixel vastagságú vonallá. Több elfogadható eredményt produkáló véknyító 

algoritmus létezik, de többségük igen lassú és torzít. 

 

          
4. ábra: A feldolgozás fő lépései: eredeti, hisztogramm-kiegyenlített,  

binarizált és véknyított kép 

 

 A binarizáció és véknyítás során igen sok torzulás jelentkezik az ujjlenyomatképen, 

legjellegzetesebb a híd és a szakadás. Ezek javítására egy ún. morfologikus szűrőt 

alkalmaznak. Híd minden olyan rövid redővonal mely összekapcsol két redővonalat és közel 

merőleges a domináns redőirányra. A hidak maximális hosszúságát empirikusan 10 pixelben 

állapították meg. A szakadás nem más, mint két végpont, melyek egy adott (empirikusan 15 

pixelben megállapított) átmérőjű körön belül vannak, és összekötésük egy, a domináns 
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redőiránnyal párhuzamos szakaszt eredményez. A tulajdonképpeni szűrés az így azonosított 

hidak törlése és szakadások kitöltése. 

 Természetesen ezen hibák detektálásában egy megfelelően tanított neuronháló is 

rendkívül jó eredményeket mutathat. Erre a célra több neuronális háló modellt is használnak, 

a legegyszerűbb MLP azaz többrétegű perceptron modell (lásd 3.1 fejezet). A tanításhoz 

szükséges adatbázist valódi és hamis minutiákat ábrázoló képrészletekből építik fel. A 

minutia környezetét is tartalmazó képrészletek lehetnek egyszerű négyzetablakok, de 

használnak kör és ellipszis alakú kivágásokat is (az ellipszis a leghatékonyabb). A minutiák 

valódiságát humán szakértő segítségével döntik el, az adatbázis minden elemét ennek 

megfelelően címkézik. A tanításhoz körülbelül 1000 – 1500 ily módon alkotott képrészletre 

van szükség. Megjegyezzük, hogy hasonló módszerrel megkísérelték a minutiák fölfedezését 

a még javítatlan szürkeárnyalatú kép esetében, de ezek a megközelítések még nem hoztak 

igazán bíztató eredményeket (Maio-Maltoni). 

 

                                  
5. ábra: A leggyakoribb hibák a véknyított képen: szakadás és híd 

 

 A minutiák meghatározása a javított, véknyított kép alapján történik, minutia minden 

olyan redőpont, melynek van legalább három, egymással nem szomszédos redőpont 

szomszédja (bifurkáció) illetőleg melynek csupán egy redőpont szomszédja van (végződés). 

 A fent említett módszernek több hiányossága is van. Elsőként említeném a lassúságot. 

Mint látható, a folyamat sok lépésből áll, ezek közül a véknyítás fokozottan időigényes. 

Ugyancsak a véknyítás fogyatékosságainak egyenes következményei a minutiapontok 

helyeinek torzulása, a nem sikeresen detektált szakadások és hidak okozta hamis minutiák 

nagyszámú jelenléte. Végkövetkeztetésként leszögezhetjük, hogy a binarizáció-véknyítás 

technika csupán jó minőségű ujjlenyomatképek biztonságos feldolgozására alkalmas. 

A direkt szürkeárnyalatú feldolgozási módszer [8, 9, 12, 13, 14] szintén egy többlépéses 

folyamat. Első lépés a kép normalizálása. Második az orientációkép meghatározása. Az 

orientációkép pontjai tulajdonképpen a lokális domináns redőirányt jelentik. A harmadik a 

frekvenciakép, melynek pontjai a lokális domináns redőközi távolságot jelenti. Ezek 

kiszámítására is több technika létezik, ezekre a következő fejezetben kitérünk. A 
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tulajdonképpeni szűrés csak ezután következik, erre a célra Gábor (lásd 3. fejezet) vagy más 

anizotropikus szűrőket alkalmaznak, melyek magvát a már kiszámított frekvencia és 

irányparamétereknek megfelelően alakítják. 

Az eljárás előnye, a rendkívül nagy tolerancia a rossz képminőségre nézve. 

Hátrányként megemlíthetjük a lassúságot. A tulajdonképpeni szűrésnek a legnagyobb a 

számítási igénye, ez teljesítményvesztéssel némileg kiküszöbölhető ha előre legenerálnak egy 

a Gábor szűrő értékeit megközelítő szűrőkből álló halmazt. Ez a próbálkozás csak akkor 

gyorsabb, ha relatív kisszámú szögre generálják le a szűrőket, ellenben pont ez okozza 

minőségbeli hátrányát. 

 

  
6. ábra:A Gábor szűrő eredménye: eredeti és feldolgozott kép 

  

Létezik egy gyors és meglehetősen megbízható módszer, a Maio és Maltoni által 

kidolgozott redőkövetéses minutia-meghatározás. Az eljárás lényege, hogy a szürkeárnyalatú 

képen megkeresik a redőket, majd ezeket követve megkeresik a minutiákat. Első lépésben 

meghatározzák az ujjlenyomat orientációképét, majd azon egyszerű kijelentésből kiindulva, 

melyszerint a redő azon pontok sorozata, melyek a redőirány mentén lokális maximumok, 

feltérképezik a redőket. Az így kapott pontokat összekötve megkapjuk a redők poligoniális 

közelítését. Ezek után a minutiák meghatározása triviális. Megjegyezzük, hogy a módszer 

azért nem ennyire egyszerű, és a kép minősége nagyon nagy mértékben befolyásolja az 

algoritmus eredményességét. 

 

Osztályozás 

Mint már korábban említettük, az osztályozás célja az adatbázisban való keresés 

egyszerűsítése. A többféle létező osztályozási rendszer közül, a leggyakrabban használt a 

Henry-féle csoportosítás (csigavonal, ív, sátor-ív, bal és jobbhurok). A különböző 
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alkalmazások igen nagy hibaszázalékot mutattak a két ívtípus megkülönböztetésénél, 

ennélfogva a legtöbb esetben ezeket egy csoportnak tekintik. 

Több szempontot illetve jellemzőt is figyelembe vehetünk az osztályozásnál. Ezek a 

redőiránykép, a delta és magpont, szimmetriatengely.  

A legegyszerűbb osztályozási rendszerek alapvetően a delta és magpont valamint a 

szimmetriatengely információkat veszik figyelembe. Az osztályozási séma relatív egyszerű: 

két magpont esetén egyértelmű a csigavonal, delta és magpont hiányában egyértelmű az ív, 

egy delta és egy magpont hurkot jelent, az irány eldöntésében segít a szimmetriatengely. A 

módszer nehézsége és fogyatékossága a delta és magpont helyes meghatározásában áll. 

Azokban az esetekben, ha az ujjlenyomatkép nem teljes, és valamely jellemző pont hiányzik a 

képről, egyértelmű a hibás osztályozás. Egy megbízhatóbb alternatíva az orientációkép 

elemzése. Erre a célra a legmegfelelőbb eszköz egy neuronális háló. Az optimális megoldás a 

két módszer ötvözete.  

Maio és Maltoni kidolgozott egy alternatív megoldást [10], mely tulajdonképpen egyet 

sem használ a fent említett jellemzőkből. Módszerük lényege, hogy bizonyos redővonal-

jellemzőket figyelembe véve, régiókra osztják az ujjlenyomatképet, a régióknak megfelelően 

felépítenek egy súlyozott gráfot. Empirikus módszerekkel megalkották a különböző osztályok 

ősgráfmintáit, majd egy inegzakt gráfillesztési algoritmussal vizsgálják az osztályozandó 

ujjlenyomat valamint az ősmintagráfok hasonlóságát, és ez alapján történik a csoportosítás. 

 

Összehasonlítás 

Az összehasonlítás célja két ujjlenyomat (bemeneti és adatbázisban tárolt) esetén 

annak eldöntése, hogy ugyanattól az egyéntől származnak e vagy sem. Tulajdonképpen meg 

kell határoznunk egy olyan teret, melyben az ujjlenyomatok különbözősége mérhető.  

Alapvető követelmény, hogy a rendszer rotáció és transzláció invariáns legyen (a 

méretinvariancia elhanyagolható). Más komoly problémák is felmerülnek az összehasonlítás 

folyamán, ezek a hamis minutiák, a valódi minutiák hiánya, valamint a bőr elaszticitása 

okozta torzulás. Hamis minutiáknak nevezzük az olyan jegyeket, melyek a bőrön található 

szennyeződések vagy vágások miatt jelentkeznek. A szennyeződések a redők közé kerülve, 

két hamis elágazást, a vágások pedig minden metszett redő esetében két végződést 

eredményeznek. 

 Ha ujjlenyomatot veszünk, tulajdonképpen az ujj háromdimenziós felületét két 

dimenzióba vetítjük. A bőr elaszticitásának köszönhetően, a lenyomat különböző mértékű 

nyomás esetén különböző mértékben torzul. Eredményképp egyes valós minutiák nem a nekik 
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megfelelő pozícióban jelentkeznek. Az előbb említett hibák kiküszöbölésére is több módszer 

létezik. A hamis-valódi minutia kérdés eldöntésére az előző alfejezetben már taglalt 

neuronhálós megközelítés a legelfogadottabb módszer. A bőrelaszticitás kiküszöbölésére egy 

lehetséges módszer a Kovács-Vajna Miklós Zsolt [7] által javasolt háromszögeléses eljárás, 

de bármely módszer átalakítható, ha az összehasonlításnál egy bizonyos toleranciaszintet 

engedélyezve, a minutia-koordinátákat intervallumként kezeljük. 

 Léteznek olyan rendszerek is, melyek nem használják a lokális jellemzőket, ezek 

eredményei még nem biztatóak, megbízhatóságuk nagyban függ a bemeneti képek 

minőségétől, ezért csupán a „klasszikus” megközelítést részletezzük.  

 A legtöbb ujjlenyomat-felismerő rendszer a következő háromlépéses sémára épül: 

1. Egy referenciapont valamint a rotáció és transzláció mértékének megállapítása 

2. A minutiák reprezentálása egy a referenciapontnak és a meghatározott paramétereknek 

megfelelő poláris koordináta-rendszerben . 

3. Az így kapott minutiahalmazok között egy illeszkedési pontszám meghatározása 

 Megjegyezzük, hogy a poláris koordináta rendszerben való ábrázolás által 

megoldottnak tekinthető a rotáció és transzláció-invariancia. 

 A már említett rotáció és transzláció mértékének meghatározására több módszer 

létezik, pl. a szinguláris pontok (mag és delta) pozícióinak, a minutiák eloszlásának 

felhasználásával. Más lehetséges megoldás például a végződés-minutiákhoz tartozó redők 

irányainak segítségével történő esztimáció. 

 A leggyakoribb eljárás egy szimbólumsorozat generálása, melyben minden elem egy-

egy minutia poláris koordinátáit (esetleg más mellékinformációkat, pl. redőirány, minutia 

típusa, stb.) tartalmazza, így az összehasonlítás redukálódik a két szimbólumsorozat 

hasonlóságának vizsgálatára. 

1.7 A DOLGOZATBAN JAVASOLT MÓDSZER ISMERTETÉSE. 

 A dolgozat és az alkalmazás megírásakor egy olyan ujjlenyomat-felismerő rendszer  

megalkotása volt a cél, mely megfelel az általunk legfontosabbnak tartott követelményeknek. 

Ezek a rotáció- és transzláció-invariancia, biztonságos felismerés, az ujjlenyomat 

hiányosságával szembeni nagy tolerancia, rossz minőségű ujjlenyomatok felismerése, 

gyorsaság. Sajnos ez utóbbit nem sikerült maradéktalanul megvalósítani, a program számítási 

igénye elfogadhatónak nevezhető ugyan, de nagyobb adatbázisokon valószínűleg igen 

lassúnak bizonyulna. 
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 A rossz minőségű ujjlenyomatok felismerhetőségének növelése érdekében a jelenleg 

legjobbnak kikiáltott képminőség-javítási technikát alkalmaztuk, névszerint a Gábor szűrős, 

direkt szürkeárnyalatú eljárást (néhány változtatást eszközölve). A minutiák lokalizálására 

egy morfológikus értelmező algoritmust használunk, melyet a későbbiekben ismertetünk. 

Ezen újszerű megoldás apropója a véknyítási folyamat kiküszöbölésének szükségessége (a 

nagy számítási igény és a torzítások miatt) volt. 

 Az osztályozást egy a hiba hátraterjedésének módszerével tanított többrétegű 

neuronális hálóval végeztük. Bemeneti adatokként az orientáció-képet használtuk. A kísérleti 

eredmények alapján kijelenthetjük, hogy az eredmények jók, de növelhetőek egy jobb tanítási 

adatbázissal.  

 Az összehasonlítás szintén újszerű megoldással történik. Mivel nem találtuk 

megbízhatónak rotációt és transzlációt esztimáló eljárásokat, igyekeztünk egy olyan 

ábrázolási formát találni, mely ezekre nézve független leírást ad. A módszer lényege, hogy 

nem egy, hanem több referenciaminutiát választunk, minden választott referenciapontra 

legenerálunk egy szimbólumsorozatot, mely jellemzi az ujjlenyomatot, és ezeket használjuk 

fel az összehasonlításhoz. A módszer tökéletesen rotáció és transzláció- invariáns. 

Hiányossága a relatív lassúság. 

 A továbbiakban az említett módszert bővebben kifejtjük. 
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2. KÉPMINŐSÉG JAVÍTÁS  

 Korábban már indokoltuk a Gábor szűrős technika használatának szükségességét, 

most részletesen ismertetjük ezt a módszert. Az egyik leghasználhatóbb közelítés, a Hong, 

Jain, Wan [12] kidolgozta eljárás, mely relatív egyszerűen implementálható, és számítási 

igénye is elfogadható. Mis is ezt a technikát alkalmaztuk, néhány változtatást eszközölve. A 

továbbiakban ezt a módszert ismertetjük, a változtatásokra is kitérve. 

2.1 JELÖLÉSEK 

 A szürkeárnyalatú ujjlenyomatképet jelölje I, ez tulajdonképpen egy N x N mátrix, 

ahol I(i,j) jelöli az i. sor j. oszlopában található pixel intenzitását. Az ujjlenyomatkép 

várhatóértéke M és szórása S, ahol: 

 

∑∑
−

=

−

=

=
1

0

1

0
2 ),(1)(

N

i

N

j
jiIIM

N
      (2.1) 

 

∑∑
−

=

−

=

−=
1

0

1

0

2
2 ))(),((1)(

N

i

N

j
IMjiIIS

N
    (2.2) 

 
 G(i,j) jelöli a normalizált ujjlenyomatképet. 

Legyen az orientációkép, O, mely szintén egy nxn mátrix, ahol O(i,j) a lokális redőirány az 

(i,j) pixelben.   

 A frekvenciakép, F, az orientációképhez hasonlóan egy nxn tömb, melyben F(i,j) a 

lokális redőfrekvenciát jelzi. A frekvenciát w x w méretű ablakokban, lokálisan számoljuk. 

Azon blokkok esetében, ahol minutiák vagy szennyeződések jelentkeznek, a frekvencia nem 

egyértelműen meghatározható. Ezen blokkok esetében a frekvenciát a szomszédos blokkok 

értékeiből származtatjuk.  

2.2 ALGORITMUS 

Az alábbi sémán láthatóak az algoritmus fő lépései: 
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7. ábra: az algoritmus sémája 

 

• Normalizáció: a bementi ujjlenyomatképet úgy módosítjuk, hogy előre 

meghatározott  a szórás és a várhatóérték. 

• Lokális orientáció meghatározás: a fent értelmezet orientációképet számítjuk, a 

már normalizált ujjlenyomatképből 

• Lokális frekvencia meghatározás: a normalizált ujjlenyomatképből és az 

orientációképből kiindulva számítjuk a már értelmezett frekvenciaképet. 

• Szűrés: a lokális orientációnak és frekvenciának megfelelően hangolt Gábor 

szűrőket alkalmazunk. 

2.3 NORMALIZÁCIÓ 

 Az eredeti elképzelésben [12] Hong és társai a teljes képen alkalmazták a 

normalizációt. Azokban az esetekben, ha a kép megvilágítása nem egyenletes (azaz a kép fele 

sötét fele pedig világos), a fontos részletek elvesztéséhez vezet. Ennélfogva, javasoltunk egy 

ablakolásos módszer, mely azt jelenti, hogy a képet w x w (esetünkben 14x14) méretű 

részekre osztjuk, és az alább leírt módszerrel blokkonként normalizálunk. 

 Legyen Iu,v az u,v blokk az I képből, u.h., Iu,v(i,j) az adott blokk i. sorának j. oszlopában 

található pixel intenzitása. Mu,v és  Su,v az aktuális szórás és várhatóérték az u,v blokkban. M0 

és S0 a kívánt várhatóérték és szórás. A G(i,j) normalizált képet a következőképpen 

számíthatjuk: 

 



Ujjlenyomatok felismerése                                                                                                    17 
 

 

                  különben   ,      
)),((

        M  j)(i,I ha ,     
)),((

),(

,

2
,,0

0

nm,nm,
,

2
,,0

0

,

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−
−

>
−

+

=

nm

nmnm

nm

nmnm

m

S
MjiIS

M

S
MjiIS

M
jiG   (2.3) 

 

⎣ ⎦ ⎣ ⎦ n1,j , m1,i ahol ), wmod j  w,mod i(),( /,/ === wjwiGjiG         (2.4) 

 
  Ahol az m és n az I kép méreteit jelentik.  

 A normalizálás egy úgynevezett pixelszintű művelet, ami azt jelenti, hogy a 

változtatások nem módosítják a redőstruktúrát. A következő ábra mutatja a normalizáció 

eredményét: 

                
8. ábra: eredeti és normalizált kép 

2.4 ORIENTÁCIÓKÉP SZÁMÍTÁS 

 Az orientációkép számítására több módszer létezik a szakirodalomban. Szinte kivétel 

nélkül mindegyik a lokális gradienseket használja a számításokhoz. A Hong és társai által 

javasolt módszert lassúnak és kevésbé megbízhatónak találtuk, ezért a Maio Maltoni 

szerzőpáros által javasolt eljárást implementáltuk [8]. A továbbiakban is ezt ismertetjük. 

 A számítások során a már normalizált G képet használjuk. Elsősorban leszögezzük, 

hogy jelen esetben az ujjlenyomatképet felületként kezeljük. A harmadik koordináta a 

pixelintenzitás. Legyen (i0,j0) az a pixel, ahol a orientációt kell számolnunk. Legyen T a  

tangens ablak, mely egy olyan (i0,j0) középpontú négyzetes mátrix, melynek oldalmérete α, 

értékei pedig a G képből átvett intenzitások.  Az így kapott ablak minden (ih,jk) pixeléhez 

hozzárendelünk egy nhk egységvektort, mely merőleges a z=G(i,j) felületre. A tangensvektor, 

ha meghatározott, az ij síkon fekszik, és merőleges a hozzátartozó nhk  egységvektorra. Az 
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átlag tangensvektor, mely jelzi a kívánt φ0 irányt (orientációt), az ij síkon fekvő, a már 

kiszámított nhk vektorokra „legmerőlegesebb” egységvektor. 

 A következő ábrán látható a tangensvektor ábrázolása: 

 
9. ábra: Tangens-ablak, tangensvektor 

 

 Az átlag tangensvektor kiszámítása a következőképpen zajlik:  

Legyen a1=T(ih+1,jk+1), a2=T(ih-1,jk+1), a3=T(ih-1,jk-1) és  a4=T(ih+1,jk-1) a tangens ablak h,k 

pixelének szomszédságába tartozó négy pixel intenzitásértéke.  

 Minden nhk egységvektor meghatározható a következő módon: 
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 Legyen vhk=(ahk,bhk), h=1,..α, k=1,..α azon vektorok, melyeket a megfelelő nhk 

vektorokból a z komponens elhagyásával nyerünk. Legyen t=(t1,t2). Formálisan ez egy 

négyzetes minimalizálási módszer: 
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Ezek után a φ0 irány könnyedén meghatározható: 
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10. ábra: Ujjlenyomat és a hozzátartozó orientációkép ábrázolása 

2.5 FREKVENCIAKÉP MEGHATÁROZÁSA 

 

Olyan, a képből kiragadott részletekben, ahol nincsenek minutiák vagy 

szennyeződések, a redők és völgyek szerkezete egy szinuszoid görbével jellemezhető, tehát 

beszélhetünk a redők frekvenciájáról. Az alábbi képen látható egy minutiamentes képrészlet, 

és a redőszerkezetet jellemző görbe. 
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11. ábra: Az x-jel kiszámításához használt irányított ablak 

 

A korábbi jelöléseknek megfelelően legyen G a normalizált kép, O az orientációkép. 

A frekvencia-meghatározási eljárás lépései a következők: 

Felosztjuk G-t w x w (16x16) méretű ablakokra 

Minden (i,j) középpontú ablakhoz hozzárendelünk egy l x w (32x16) méretű irányított ablakot 

(lásd a fenti ábrát). 

Minden (i,j) középpontú ablakban kiszámítjuk az x-jelet (x signature), mely értékei X[0],X[1], 

. . X[l-1], ahol 
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Ha nincs minutia vagy szennyeződés az irányított ablakban, az x-jel egy diszkrét 

szinuszoid jellegű formát mutat, melynek frekvenciája megegyezik a redőstruktúra 

frekvenciájával. Ennélfogva a frekvenciát meghatározhatjuk az x-jel alapján. Legyen T(i,j) az 

(i,j) középpontú ablakhoz tartozó x-jel két egymást követő csúcsa közötti pixelek számának 

átlaga, ekkor a frekvencia az adott blokkra a következőképpen számítható: Ω (i,j) =1/T(i,j). 

Ha nem biztonságosan meghatározhatóak a csúcsok, a frekvenciakép értékét -1 –re állítjuk. 

 4. Az F.B.I. által is javasolt, és a leggyakrabban (általunk is) használt 500 dpi 

felbontással szkennelt képek esetében a frekvencia az [1/5,1/20] tartományban van. 
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Ennélfogva, ha a kiszámított frekvenciaérték nincs ebben az intervallumban, az azt jelenti, 

hogy az adott blokkban a helyes érték nem meghatározható, tehát a kapott eredményt 

figyelmen kívül hagyjuk, illetve értékét -1 –re állítjuk, hogy megkülönböztessük a helyes 

értékektől. 

 5. Azon blokkok esetében, ahol a frekvencia-megállapítás nem bizonyult sikeresnek, a 

lokális frekvencia értékét a szomszédos blokkok értékeiből kell interpolálnunk. Az 

interpoláció menete a következő: 

 (i) minden (i,j) középpontú ablakban 
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ahol 
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 Wg  egy diszkrét Gauss mag, ahol a várhatóérték 0, a szórás 9, és wΩ = 7 a mag mérete.  

 (ii) Ha még létezik legalább egy olyan ablak, melyben a frekvencia értéke 

meghatározatlan (illetve -1), cseréljük fel Ω és Ω’ és ismételjük az első lépést. 

 

 6. A redők közötti távolság méreteiben nincsenek nagy ugrások, ezért a kapott 

frekvenciakép finomítására ajánlott egy szűrő használata. Így megszüntethetőek a nagy 

ugrások a frekvenciaértékekben. A frekvenciakép végső értékei tehát a következő módon 

számíthatóak: 
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ahol Wl egy kétdimenziós „low-pass” szűrő, wl=7 a szűrő mérete. 

 A diszkrét Gauss mag kiszámítása a Gauss-eloszlásfüggvény alapján történik, 

tulajdonképpen egy n x n mátrix: 
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2.6 SZŰRÉS 

 A redők és völgyek párhuzamos szerkezete, jól meghatározott irány és frekvencia 

paraméterek esetén nagy segítséget nyújthat a nemkívánatos szennyeződések eltávolításában. 

A már említett szinuszoid görbék jellege lokálisan csak kismértékben változik, ennélfogva 

egy megfelelően hangolt ú.n. „bandpass” szűrő hatékony lehet a szemét eltávolításában, 

anélkül, hogy a valós redőszerkezetet lényegesen módosítaná. A Gábor szűrők, frekvencia- és 

orientáció-függésüknél fogva erre a célra tökéletesen megfelelnek. 

 A kétdimenziós „even-symmetric” (a komplex rész elhagyva) Gábor – szűrő általános 

alakja: 
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ahol φ a Gábor szűrő orientációja,  f a frekvencia, δx , δy konstansok. 

A „modulation transfer function” (MTF) a következőképpen ábrázolható: 
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ahol δu =1/2π δx és δv =1/2π δy . Az alábbi ábrán látható az „even-symmetric” Gábor szűrő, és 

a hozzátartozó MTF. 

 

 
12. ábra:Gábor szűrő 0o orientáció és 1/10 frekvencia, valamint a hozzátartozó MTF 
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 Ahhoz, hogy egy Gábor szűrőt alkalmazzunk, meg kell határoznunk három paraméter 

értékét: a szinuszoid görbe frekvenciáját, a szűrő orientációját, valamint a δx , δy konstanspárt. 

Értelemszerűen, frekvenciaparaméterként a már kiszámított lokális redőfrekvenciát, 

orientációparaméterként pedig a lokális redőorientációt használjuk. A δx , δy paraméterek 

kiválasztása empirikusan történik. Ha ezen értékek nagyobbak, a szűrő hatékonyabban 

szünteti meg a szemetet, de nagyobb a hamis redők létrehozásának esélye. Ellenkező esetben, 

értelemszerűen a szűrő kevésbé hatékony, de kevesebb hibát is vét. A mérési adatoknak 

megfelelően Hong és munkatársai mindkét paraméter értékét 4.0 –ben határozták meg. 

 Legyen tehát G a normalizált bemeneti kép, O az orientációkép, F a frekvenciakép, az 

E javított kép a következő módon számítható: 
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ahol wg = 11 a Gábor szűrő méretét jelzi. 
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3. OSZTÁLYOZÁS 

 Az osztályozás célja az adatbázis felosztása, ez lehetővé teszi azt, hogy egy 

azonosítási folyamat során ne keressünk a teljes adatbázisban, hanem csak azon részében, 

melybe a vizsgált ujjlenyomat is tartozik. Mint említettük, esetünkben legcélszerűbb négy 

osztályba sorolni a mintákat. Ha bonyolultabb sémát választunk, a hibás osztályozások száma 

igen nagy. A korábbiakban már vázoltuk a négy osztályt (ív, csigavonal, jobb és balhurok).  

 Az osztályozást egy a hiba hátraterjedésének módszerével tanított többrétegű 

perceptron modell segítségével végezzük.  

3.1 A TÖBBRÉTEGŰ PERCEPTRON MODELL (MULTILAYER 
PERCEPTRON)   

A többrétegű perceptron modell (továbbiakban MLP) [15, 16] három fontosabb 

részből áll: bemeneti réteg (egy neuronhalmaz),  ezen keresztül kapja meg az MLP a bemeneti 

információkat, egy vagy több rejtett réteg valamint egy kimeneti réteg. A bemeneti jel 

rétegről-rétegre terjedve halad át  a hálón (lásd ábra).  

Egy réteg nem más, mint egy neuronhalmaz, melyek elemei egymással nincsenek 

összeköttetésben. A rejtett illetve kimeneti rétegek neuronjainak bemenetei, az őket megelőző 

réteg neuronjainak kimenetére vannak csatolva. A bemeneti jel “áthaladásán”, azt a 

folyamatot értjük, melynek során a bemeneti réteg neuronjainak kimenetein keletkezett jel 

feldolgozásra kerül a következő réteg neuronjaiban, majd az itt keletkezett jel hasonló módon 

kerül a következő rétegbe, ugyanígy rekurzívan, amíg el nem jut a kimeneti rétegbe. 

 Az MLP leggyakoribb tanítási formája a hiba hátraterjedésének módszere (error back-

propagation, továbbiakban BP). Ez egy felügyelt tanítási forma, egyszerűségének és 

hatékonyságának köszönhetően igen népszerűvé vált, tulajdonképpen ennek köszönhető az 

MLP-k elterjedése. 

 Alapvetően a tanítás két lépésből áll, első lépésben a bemeneti rétegnek bemutatjuk a 

bemeneti információt, majd ez a bemeneti jel előrehalad az MLP-ben, a kimeneti rétegig, ezt 

nevezzük előrelépésnek. A kimeneti rétegben kiszámítjuk a hibajelet (a kívánt és a kapott 

eredmény különbsége), majd ezt a jelet hátrafelé léptetjük a hálóban, és a kívánt mértékben 

módosítjuk a szinaptikus súlyokat. 

A többrétegű perceptron modell három jellemző tulajdonsággal rendelkezik: 
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• A modell minden neuronja rendelkezik egy nemlineáris aktivációs függvénnyel. A 

leggyakrabban használt aktivációs függvény a szigmoidális, azaz 

( )j
j v

y
−+

=
exp1

1  

 
ahol vj a j neuron belső aktiváltsága, azaz a súlyozott bemenetek összege; yj a neuron 

kimenete. 

• Egy vagy több rejtett réteg, melyek neuronjai nem tagjai sem a kimeneti sem a 

bemeneti rétegnek. Ezek a rejtett rétegek teszik képessé a hálót bonyolult feladatok 

megoldására, ugyanis a bementi mintákból fontos jellemzőket vonnak ki. 

• magas szintű konnektivitás, azaz a tulajdonképpeni szinapszisokat megvalósító 

kapcsolatok. Bármely változás ezen kapcsolatrendszerben a szinapszisok súlyainak 

változtatásának szükségességét vonja maga után. 

 

 
15. ábra: Két rejtett rétegű  MLP arhitektúrája, szinaptikus kapcsolatok 

3.2 JELÖLÉSEK ÉS ELNEVEZÉSEK. 

 Mint már említettük két típusú jelet különböztetünk meg az MLP-ben. Az egyik a 

stimulus, ami nem más mint a bemeneti jel, a másik a hibajel, mely a kimeneti rétegben 

keletkezik és visszafelé halad a hálóban. 

 A továbbiakban  i,j és k a háló különböző neuronjait jelentik. Különböző és egymást 

követő rétegekben vannak, sorrendjük megfelel az előrehaladási iránynak. Ebből következik, 

hogy j egy rejtett réteghez tartozik. 

 Az n. iteráció jelenti az n-edik tanítási minta bemutatását. 



Ujjlenyomatok felismerése                                                                                                    26 
 

E(n) jelenti a négyzetes hibák összegét az n iterációban. Az átlagos hiba azaz Eav nem 

más mint az E(n)értékek számtani közepe. 

 ej(n) – a j neuron hibajele az n iterációban. 

 dj(n) – a j neurontól elvárt válasz az n iterációban   

 yj(n) – a j neuron válasza (kimeneti jel) 

wji(n) – az i neuron kimenetét a j neuronnal összekötő él súlya az n iterációban. Az 

említett élen végrehajtott korrekció: ∆wji(n) 

 vj(n) – a j neuron aktiváltsága az n iterációban   

  φj(·) – a j neuron válaszfüggvénye 

bj(n)- A bias a j neuronban, ez nem más, mint egy +1 értékű állandó bemenetre csatolt 

él 

xi(n) – a n bemeneti minta i eleme 

ok(n) – a kimeneti vektor k eleme 

η – a tanítási paraméter (0 és 1 közöti konstans) 

ml – az l réteg mérete (neuronok száma), l = 0, 1, . . . , L ahol L a rétegek száma azaz 

az MLP mélysége 

3.3 A HIBA HÁTRATERJEDÉSÉNEK ALGORITMUSA 

 A j neuron hibajele az n iterációban a következőképpen határozható meg: 

 
)()()( nyndne jjj −=  , ahol j egy kimeneti neuron   (3.1) 

 

Értelmezés szerint legyen  a négyzetes hiba értéke a j neuron esetében )(
2
1 2 ne j . A négyzetes 

hiba az MLP-re nézve tehát a kimeneti neuronok hibáinak összege, azaz: 
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Ahol C a kimeneti rétegben található neuronok halmaza. Legyen N a tanítási minták száma, 

ekkor az átlagos hiba értéke: 
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Megállapíthatjuk, hogy a négyzetes hiba E(n) és az átlagos hiba Eav a neuronháló 

paramétereinek azaz a súlyok és bias-ok függvénye. Egy adott tanítási minta esetén Eav 

költségfüggvényként tekinthető, és általa mérhető a tanulási teljesítmény. A tanítási folyamat 

tehát nem más, mint a már említett paraméterek változtatása annak érdekében, hogy Eav 

értékét minimalizáljuk. E cél elérése érdekében egy egyszerű módszert alkalmazunk, mely 

szerint a súlyokat minden egyes újabb minta bemutatása után javítjuk (a gradiens módszerrel). 

A teljes tanítási mintahalmaz bemutatását korszaknak nevezzük. A korszak végén 

kiértékelhető az MLP aktuális pontossága. Az előbb említett, minden minta esetében 

végbemenő módosítások számtani közepe tulajdonképpen úgy tekinthető, mint annak a 

módosításnak a becslése, melyet a korszak végén Eav –t kiértékelve kapnánk. 

 

 Tekintsünk egy j neuront, egy rejtett rétegből. Ekkor a neuron bemeneteit az őt 

megelőző réteg neuronjainak kimeneti jelei adják. Ekkor a j neuron aktiváltsága: 
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ahol m a bemenetek száma (a biast leszámítva). A wj0 súly (a rögzített y0=+1 bemenetnek 

megfelelő) nem más mint a bias. Így elkerülhetjük azt, hogy a számításokban különbséget 

tegyünk a bias és a súlyok között. 

A j neuronban keletkező kimeneti jel az n iterációban tehát: 

 
))(()( nvny jj ϕ=      (3.5) 

 
A hiba hátraterjedésének algoritmusa egy a )(/)( nwnE ji∂∂  parciális deriválttal arányos 

∆wji(n) értékkel javítja az élek súlyait. A parciális derivált kifejezhető: 
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A (3.2) egyenlet mindkét oldalát differenciálva ej(n) szerint kapjuk: 
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A (3.1) egyenlet mindkét oldalát differenciálva yj(n) szerint kapjuk: 
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Következőként a (3.5) egyenletet differenciáljuk vj(n) szerint: 
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Végül a (3.4) egyenletet wji(n) szerint differenciálva: 
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A (3.7)–(3.10) egyenleteket behelyettesítve a (3.6) egyenletbe: 
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Az élekre alkalmazott módosítás értéke: 
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ahol η a tanítási paraméter, – )(/)( nwnE ji∂∂  a leszállási irány. 

A (3.11) egyenletet a (3.12)–be behelyettesítve kapjuk: 
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ahol a lokális gradiens, δj(n) a következő: 
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A (3.14) egyenletből látható, hogy a kívánt változtatás a neuronnak megfelelő hibajel 

és a választott válaszfüggvény deriváltjának szorzata. 

Mivel láthatjuk, hogy a hibajelnek kulcsszerepe van a wji(n) meghatározásában, és 

mint tudjuk, ezt egyelőre csak a kimeneti rétegben ismerjük, ezért két esetet különböztetünk 
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meg, attól függően, hogy a j neuron rejtett vagy kimeneti. Természetesen a rejtett neuronok 

súlyvektorait is módosítanunk kell, ennek érdekében meg kell állapítanunk, hogy egy rejtett 

neuron milyen mértékben felelős a végső hiba méretéért, azaz ki kell számolnunk minden 

rejtett neuron hibajelét. Ezt a hibajel hátrafelé történő terjesztésével érjük el (innen az 

elnevezés). 

A már említett két eset tehát: 

1. a j egy kimeneti neuron 

 Ha egy neuron a kimeneti rétegben van, ismerjük a várt kimeneti jelet. A (3.1) 

egyenlet segítségével könnyedén kiszámíthatjuk a hibajelét. Az ej(n) értékét ismerve a lokális 

gradiens kiszámítása a (3.14) segítségével triviális. 

2. a j egy rejtett neuron 

 Ha egy neuron egy rejtet rétegben van, nem ismerjük a várt kimeneti jelet, tehát meg 

kell állapítanunk azt, mégpedig úgy, hogy rekurzívan visszavezetjük azon neuronok 

hibajeléből, melyekkel összeköttetésben áll. 

 

 
16. ábra: Előrehaladó lépés folyama az MLP-ben 

 

A (3.14) egyenlet alapján újradefiniálhatjuk a lokális gradienst: 
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A )(/)( nynE j∂∂ parciális derivált kiszámítása következik. Értelmezés szerint, az (3.2) alapján 

 

csúcs kimenetiegy   ahol    , )(
2
1)( 2 knenE

Ck
k∑

∈

=    (3.16) 

 
A (3.16) egyenlet differenciálja az yj(n) kimeneti jel szerint: 
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Ugyancsak értelmezés szerint, és az amint az ábrán is látható: 
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következésképp 
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A k neuron aktiváltsága: 
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ahol m a k neuron bemeneteinek száma. Ezt az yj(n) szerint differenciálva kapjuk: 
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A (3.20) és (3.22) egyenleteket felhasználva, a (3.18) egyenlet alapján megkapjuk a kívánt 

parciális deriváltat: 
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a második sorban felhasználtuk a lokális gradiens (3.15) egyenletben adott értelmezését. 

És végül a (3.23) és (3.15) egyenleteket felhasználva felírhatjuk a lokális gradiens 

hátraterjedésének egyenletét: 

 
rejtettneuron   a ha     , )()())(()( jnwnnvn

k
kjkjjj ∑′= δϕδ    (3.24) 

 
Összefoglalva az algoritmus a következő képen írható: 
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 A tanítási paraméter megválasztása egy igen kényes feladat. Csak 0 és 1 között vehet 

fel értékeket, 10 <<η . Minél nagyobb a η annál gyorsabban közelít az algoritmus, és 

fordítva. Azonban van egy probléma, ha a választott érték túl nagy, előfordulhat, hogy az 

algoritmus oszcillálni kezd. Ha a választott érték kicsi, hosszabb ugyan a tanítás menete, de 

jobb eredmények érhetőek el. 

3.4 A VÁLASZFÜGGVÉNY 

Minden neuron esetében a lokális gradiensek számításához szükséges az adott neuron 

válaszfüggvényének a deriváltjának ismerete. A deriválhatóság megköveteli, hogy a 

válaszfüggvény folytonos legyen (elméletileg ez az egyetlen feltétel amit teljesítenie kell). 

 Az egyik legnépszerűbb, és általunk is használt válaszfüggvény az úgynevezett 

szigmoidális, melynek alakja: 
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 Az MLP esetében alakja: 
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ahol vj(n) a j neuron aktiváltsága. Mint láthatjuk, a kimeneti jel 0 és 1 között van: 10 ≤≤ jy  

A (3.27) egyenletet differenciálva vj(n) szerint: 
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Felhasználva azt, hogy ))(()( nvny jjj ϕ= , kiküszöbölhetjük  az exponenciális kifejezést: 

 
( ) ))(1)(()( nynaynv jjjj −=′ϕ       (3.29) 

 
Egy a kimeneti rétegben levő j neuron esetében )()( nony jj = , ennélfogva a j neuron esetében 

a lokális gradiens a következőképpen számítható: 
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Egy rejtett rétegben levő j neuron lokális gradiense pedig: 
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3.5 AZ OSZTÁLYOZÁST VÉGZŐ MLP 

Az ujjlenyomatok osztályozását tehát egy MLP segítségével végezzük. A kiválasztott 

háló egy bemeneti, egy kimeneti és két rejtett rétegből áll. A bemeneti réteg a tanítási adatok 

dimenziójának megfelelően 400, a kimeneti, mivel ez egy osztályozó háló, az osztályok 

számával egyenlően 4 neuront tartalmaz. Mindkét rejtett réteg 50 neuronból áll. 

A betanított háló esetében, egy adott minta bemutatása után, a kimeneti rétegben az 

annak az osztálynak megfelelő neuron tüzel, melybe a minta tartozik. 

Az alkalmazott válaszfüggvény szigmoidális. A tanításhoz a fentebb ismertetett hiba 

hátraterjedésének algoritmusát használtuk.  

3.6 BEMENETI ADATOK GENERÁLÁSA, TANÍTÁS 

A tanítási folyamatban használt mintákat az ujjlenyomatképekből képezzük. 

Alapkövetelmények, hogy a dimenziók száma konstans legyen minden lenyomat esetében, 

valamint, hogy a minta reprezentatív legyen. Legalkalmasabb a redőirány adta információ, 

hiszen ez könnyen számítható valamint tökéletesen jellemzi az osztályokat. A bemeneti 
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adatok reprezentatív jellege és mérete közötti egészséges egyensúly megtartásának érdekében, 

a minta dimenzióját 400-ban határoztuk meg (empirikus úton). Tulajdonképpen a 3.4 

fejezetben már ismertetett orientációképből indulunk ki. A képre “ráhúzunk” egy 20 x 20 

méretű hálót, és minden csomópontban megvizsgáljuk a lokális orientációt. A 400 

csomópontból álló mátrixból képezzük  a bemeneti vektort, tulajdonképpen ez azt jelenti, 

hogy a mátrix sorait egymás után fűzzük.  

A tanítási folyamatban használt mintahalmaz 40 elemből áll, azaz minden osztályhoz 

tartozik 10 minta. Ez a mennyiség csak kísérleti célokra elegendő, az osztályozás 

megbízhatósága érdekében ezt növelni kell. 

A módszer jelentős hiányossága, hogy nem rotáció invariáns. A neuronháló magas 

hiba-toleranciaszintje megenged bizonyos mértékű forgatást, mindazonáltal lényeges, hogy a 

bemutatott ujjlenyomat hozzávetőlegesen függőleges helyzetben legyen. 
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4. UJJLENYOMATOK ÖSSZEHASONLÍTÁSA 

 Az összehasonlítás képezi a tulajdonképpeni feladatot. Azok után, hogy az 

ujjlenyomatot feldolgoztuk, besoroltuk valamely osztályba, meg kell vizsgálni, hogy milyen 

mértékben azonos az adatbázisban tárolt lenyomatokkal. Mint már említettük, az 

összehasonlítást a minutiák alapján végezzük. A kriminológiában általánosan elfogadott 

nézet, hogy ha két ujjlenyomat legalább nyolc minutiája egyértelműen egyezik, a két 

ujjlenyomatot azonos személytől származónak tekinthető. Automatizált azonosítási 

rendszerekben ez az eljárás nem célszerű, kézenfekvőbb egy pontozási rendszert bevezetni, 

meghatározni a két ujjlenyomat illeszkedésének mértékét, és a kapott eredmény alapján 

eldönteni, hogy azonosak-e vagy sem. 

4.1 MINUTIA KERESÉS 

 A szűrés eredményeképp kapott képet binarizálva, megkapjuk a bináris redőképet, 

melyben minden pixel, mely egy redőhöz tartozik fekete, minden völgyhöz tartozó képpont 

pedig fehér. 

 

        
13. ábra: Bifurkáció és a komplementerkép 

 

 Megfigyelhető, hogy a bifurkáció, tulajdonképp egy végződés komplementere. 

Ennélfogva elegendő a bifurkáció detektálásra koncentrálnunk, a végződések keresése 

hasonló. A feladat redukálható egy olyan jellemző meghatározására, mely egyértelműen 

meghatároz minden bifurkációt. Elsősorban el kell döntenünk, hogy az adott bifurkáció mely 

pixelét vegyük figyelembe a koordináták meghatározásakor. Úgy döntöttünk, hogy a völgy 

végződéspontja, azaz egy fehér pixel legyen a meghatározó pont. A bináris redőkép minden 

pixelét meg kell vizsgálnunk. A vizsgálathoz természetesen elemeznünk kell a környezetet is. 

Ennélfogva minden képponthoz hozzárendelünk egy w x w méretű ablakot, melynek 

középpontjában az aktuálisan vizsgált képpont van.  
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 Legyen nr a redőpontok, nv pedig a völgypontok száma a vizsgált ablakban. Legyen 

v

r

n
nk =  , a redő és völgypontok aránya.  

Az alábbi ábrán látható a bifurkáció és a vizsgálati ablak. 

 
14. ábra: Bifurkáció és a vizsgált környezet 

 

Annak a feltétele, hogy egy pont bifurkációhoz tartozik, a következőképpen írható:  

• A vizsgált pont völgypont 

• A k értéke meghalad egy bizonyos t küszöbértéket  

• A redőpontok a vizsgált ablakban egy összefüggő régiót alkotnak  

Az első feltétel biztosítja, hogy nem egy redő belső pontjáról van szó.  A t küszöbérték 

kiválasztása egy kényes feladat, alacsony érték esetén egy egyszerű hajlat is minutiaként 

értékelhető, túl magas érték esetén pedig fennáll a minutiák figyelmen kívül hagyásának a 

veszélye.  A harmadik feltétel biztosítja, hogy két, egymáshoz közel fekvő redő ne 

értékelődjék minutiaként. 

A fentebb vázolt feltétel egy bifurkáció esetén több képpontra is igaz. A megfelelő képpont 

kiválasztása mindössze azt jelenti, hogy azt a képpontot választjuk, mely esetében a k értéke 

maximális. Ezen kiválasztás során, legrosszabb esetben, valódi helyzethez viszonyított 

maximális deviancia értéke 
2
2w . Ez az eltérés a véknyítási folyamat okozta eltolódásokhoz 

viszonyítva elhanyagolható.   

 Az általunk végzett kísérletek alapján kijelenthetjük, hogy az imént ismertetett eljárás 

kevesebb hamis minutiát eredményez és gyorsabb mint a véknyításos technika. 
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4.2 AZ ILLESZKEDÉS FOGALMA 

Tekintsünk a sík egy ponthalmazát. Ezt reprezentáljuk egy súlyozott gráf segítségével, oly 

módon, hogy a gráf minden csúcsa össze van kapcsolva minden csúcssal, az élek súlya pedig 

a pontok közötti távolság. Ez egy redundáns, de tökéletes leírás. 

Szükségünk van néhány fogalom bevezetésére: 

A teljes súlyozott gráf, egy olyan súlyozott gráf, melyben bármely két csúcs között létezik 

él. 

Egy teljes súlyozott gráf teljes részgráfja a csúcsok és élek egy részhalmaza úgy, hogy a 

kiválasztott csúcsok és élek egy teljes súlyozott gráfot alkotnak. 

Egy teljes súlyozott gráf egy I csúcsából kiinduló élek halmazát jelölje Ie . 

Egy A és B teljes súlyozott gráf ekvivalens, ha a csúcsok száma azonos, és A bármely I 

csúcsát választva létezik a B egy olyan J csúcsa, melyekre igazak a következő kijelentések: 

• Ie és Je elemeinek száma azonos, azaz card(Ie)=card(Je) 

• Ie bármely elemét választva létezik a Je egy olyan eleme, mely azonos az Ie 

választott elemével, azaz yxJyIx ee =∈∃∈∀     ,   ,  

Tekintsük két ponthalmaz az imént leírt módszerrel képzett gráfreprezentációját. A két 

ponthalmaz illeszkedő ponthalmazait az őket ábrázoló teljes súlyozott gráfok ekvivalens teljes 

részgráfjai képezik. 

Az összehasonlítás problémája tehát nem más, mint két ponthalmaz esetében a 

legnagyobb illeszkedő részhalmaz megkeresése. Az alábbi ábrán igyekeztünk szemléltetni a 

feladatot. 

 
17. ábra: Két ponthalmaz legnagyobb illeszkedő részhalmaza. 
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 A szürkével jelölt pontok képezik az illeszkedő ponthalmazokat. Jól látható, hogy az 

illeszkedést nem befolyásolja más, csupán a részhalmazok elemeinek egymáshoz viszonyított 

helyzete. 

4.3 A MINUTIÁK REPREZENTÁCIÓJA 

 Mint az 1.6 és 1.7 fejezetekben említettük, egy automatizált felismerő rendszernek 

teljesítenie kell néhány követelményt: 

• rotáció invariancia 

• transzláció invariancia 

• a bőrelaszticitás okozta torzulások kezelése 

A rotáció és transzláció invariancia tulajdonképpen azt jelenti, hogy az ujjlenyomat 

felismerését nem befolyásolhatja az ujjlenyomat elfordulása vagy elcsúszása. Ez érthető, 

hiszen két különböző mintavétel esetén szinte lehetetlen, hogy ugyanabban a helyzetben 

legyen az ujj. Az 1.6 fejezetben tárgyaltuk a bőrelaszticitás okozta torzulás problémáját. Ismét 

összefoglalva, ujjlenyomatvételkor, a különböző nyomáserősségeknek köszönhetően a bőr 

különböző mértékben torzul. Ez a minutiapontok egymáshoz viszonyított helyének 

módosulásához vezet. Az összehasonlítás során figyelembe kell vegyük ezt a torzulást.  

A megoldás az első két követelmény esetében egy olyan ábrázolási mód megtalálása, 

mely nem használja a pozícióra vonatkozó információkat. A 4.2 fejezetben ismertetett teljes 

súlyozott gráf ezen követelményeket teljesíti. Azonban felmerül egy probléma: a részgráfok 

megtalálása komputacionális szempontból nagyon költséges. 

 Úgy döntöttünk, hogy egy kicsit módosítunk a leíráson. A továbbiakban a ponthalmazt 

nem a gráffal reprezentáljuk, hanem egy szimbólumsorozattal. Elsősorban a 

minutiahalmazból kiválasztunk egy úgynevezett referenciaminutiát. A ponthalmazt a 

referenciaminutiától mért távolságok, és a különböző pontokat a referenciaponttal összekötő 

szakaszok bezárta szögekkel írjuk le. 

 Az alábbiakban látható egy minutiahalmaz sematikus ábrája. 

 



Ujjlenyomatok felismerése                                                                                                    38 
 

 
18. ábra: Minutiahalmaz és a képzésben használt jellemzők 

 
Legyen A egy minutiahalmaz. Legyen r a halmaz egy kiválasztott eleme, a 

referenciaminutia.  

A halmaz i pontját a referenciaminutiával összekötő szakasz hosszát jelölje dir . 

A halmaz két, i, j pontját a referenciaminutiával összekötő szakaszok bezárta szöget 

jelölje αirj . 

A minutiahalmazt leíró S szimbólumsorozat minden eleme egy s=(αxry ,dxr ,dyr) alakú 

háromtagú szimbólum.  

Legyen A egy minutiahalmaz, r egy referenciaminutia, ekkor az S’ szimbólumsorozat 

képzése a következő: 

 
{ }jrrijiAjiddssS jririrj ≠≠≠∈==′ ,,,,),,,(α     (4.1) 

 
 Ez még mindig nem egy tökéletes leírás, hiszen redundáns, az i,j és j,i leírása 

tulajdonképpen ugyanaz, ezért elegendő lenne, ha egyszer szerepelne a sorozatban, 

megegyezés szerint a hosszabb távolság szerepelne elsőként a szimbólumban. Ennek 

megfelelően tehát az S szimbólumsorozat képzését egy sematikus algoritmussal írjuk le: 

1. rAA /=  

2. kiválaszt Ai∈  

3. iAA /=  

4. { }jrjiAjddddssSS jrirjririrj ≠≠∈== ,,)),,min(),,max(,(αU  

5. amíg φ≠A  vissza a 2. lépéshez 

 
Ahol r a kiválasztott referenciaminutia. 

A szimbólumsorozat elemeinek száma:  
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 A majdani összehasonlítás megkönnyítése érdekében, a kapott sorozatot rendezzük 

mindhárom paraméter szerint növekvő sorrendben. A számítási igény csökkentése érdekében 

ajánlott egy gyorsrendező algoritmus használata. 

 Fölmerül egy probléma. Amikor két ponthalmazt akarunk összehasonlítani, lényeges, 

hogy a szimbólumsorozatok képzéséhez olyan referenciapontokat válasszunk, mely mindkét 

halmazban biztosan szerepel. Ennek eldöntése lehetetlen, ennélfogva kénytelenek vagyunk 

minden pontot referenciaminutiaként kezelni. Ez tulajdonképpen azt jelenti, hogy egy n elemű 

minutiahalmaz teljes leírását n darab szimbólumsorozattal adjuk meg, mindegyikben más-más 

a referenciaminutia. 

4.4 INEGZAKT ILLESZTÉSI ALGORITMUS 

 Mint említettük, a feladat a két minutiahalmaz maximális illeszkedő részhalmazának a 

keresése. Tulajdonképpen az illeszkedés mértékét kellene számszerűen kifejeznünk. Hogy ezt 

mérhetővé tegyük, egy illeszkedési pontszámot határozunk meg, mely a minutiahalmazok és 

az illeszkedő részhalmazok számosságának a függvénye. 

 Az ábrázolás folytán, a 6. fejezetben említett problémák közül a rotáció és transzláció 

invarianciát kiküszöböltük, a bőrelaszticitás okozta torzulások kezelése az összehasonlító 

algoritmusra hárul. A legkézenfekvőbb megoldásnak az tűnik, ha két szimbólum 

összehasonlításakor engedélyezünk egy bizonyos küszöbérték alatti devianciát. Ennek 

figyelembevételével értelmezzük két szimbólum egyenlőségét. Legyen a,b két szimbólum, tα 

a szögekre, td a távolságokra vonatkozó küszöbérték, ekkor: 
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(4.3) 

 
Az összehasonlítási folyamat tulajdonképpen a két szimbólumsorozat párhuzamos 

bejárását jelenti, végeredményként az egyenlő szimbólumok számát kapjuk. 

 A következőkben ismertetjük a párhuzamos összehasonlítás menetét. Legyen a és b 

két szimbólumsorozat, szimbólumaik száma na valamint nb. Jelölje a(i)=(αai, da1i, da2i) az a 

szimbólumsorozat i. elemét, hasonlóan b(i)=(αbi, db1i, db2i). A feladat, minden a(i), ani ,1=  
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elem megfelelőjének keresése a b sorozatban. Nem véletlenül rendeztük a sorozatot. Amikor 

a(i) elem megfelelőit keressük, elég a b azon részét vizsgálni, melyben a b(j) szimbólum α 

paramétere, a tolerancia figyelembevételével, egyenlőnek tekinthető a(i) elemével. 

Tulajdonképpen a b szimbólumsorozat egy növekvő részsorozatát keressük. Legyen  a 

részsorozat legkisebb elemének indexe jinf , a legnagyobbé jsup ,  

 
inf)1(inf bjaibj t ααα α ≤−<−         (4.4) 

sup)1(sup bjaibj t ααα α ≤+<−  

 
 Ha ennek megfelelően meghatároztuk a jinf , jsup értékét, akkor a kapott b’ 

részsorozatba a b azon elemei kerülnek, melyek első paramétere megfelel az a(i) első 

paraméterének. 

A kapott részsorozatot tovább szűkíthetjük. Mint tudjuk, a szimbólumsorozat másodlagosan 

rendezve van a második, valamint harmadlagosan a harmadik paraméter szerint. Tehát a b’ 

sorozatban található elemek, melyeknek első paramétere azonos, a második szerint  

növekvően vannak rendezve. Azaz a b’ sorozatot tovább bonthatjuk k darab, a d1 szerint 

növekvő részsorozatra, melyeket a továbbiakban bk-val jelölünk. Minden bk esetében 

meghatározhatjuk a jd1inf , jd1sup értékét, a jinf –hoz hasonlóan, azaz:  

 
inf11)1inf(1 jbdiajb kk dtdd ≤−<

−
   ,   

sup11)1sup(1 jbdiajb kk dtdd ≤−<
−

    (4.5) 

 
A mellékelt ábrán igyekeztünk szemléltetni a felosztást. 

 

 
19. ábra: A tolerancia-intervallumok és részsorozatok  meghatározása 

 a szimbólumsorozatokban 

 
 A következőkben tovább bontjuk a részsorozatokat, ha egyáltalán léteznek, a 

harmadik paraméter, a d2 szerint, az előzőekkel megegyező módon. 
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Ha létezik legalább egy ilyen harmadszintű részsorozat, az azt jelenti, hogy 

megtaláltuk az a(i) – nek megfelelő elmet, és leállítjuk a keresést. Ekkor továbbléptetjük az i-

t, és hozzáigazítjuk a jinf és jsup értékét. Tehát tulajdonképpen csak előrelépés történik, és 

egyszerre léptetjük az i változót valamint a toleranciaintervallumot (innen a párhuzamos 

elnevezés).  

 Megjegyezzük, hogy valós esetekben nem túl gyakran fordul elő, hogy több 

másodszintű sorozatot kapjunk, tehát az algoritmus nem annyira sokágú, mint a fentebb 

ismertetett “legrosszabb-eset forgatókönyv” esetében. 

 Az összehasonlítást, a két minutiahalmazból származtatott szimbólumsorozatok 

minden lehetséges párosítására el kell végeznünk, azaz ha a két halmaz számossága n1 ill. n2, 

a szükséges összehasonlítások száma: n1*n2. Ez még egy kis magyarázatra szorul. A 4.3 

fejezetben bemutattuk a minutiák reprezentációját. Tehát a minutiahalmazt egy 

szimbólumsorozat – halmaz segítségével írtuk le. Minden minutiát egyszer és csakis egyszer 

referenciaminutiának választottunk, és hozzárendeltünk egy szimbólumsorozatot. Ha két 

minutiahalmazt akarunk összehasonlítani, mindkettő leíró halmazából egy olyan 

szimbólumsorozatot kell kiválasztani, melyek generálásakor ugyanazt a minutiát használtuk 

referenciaminutiaként. Mivel a minutiák nem sorszámozhatók, nem tudhatjuk, mikor 

bukkantunk egy ilyen párosításra, ezért minden lehetséges párosítás esetén el kell végeznünk 

az összehasonlítást, kiszámoljuk az illeszkedési pontszámot (lásd 4.5). Az így kapott 

illeszkedési pontszámok maximumát tekintjük az összehasonlító algoritmus végered-

ményének. 

4.5 AZ ILLESZKEDÉSI PONTSZÁM 

 Az ujjlenyomatok hasonlóságát illeszkedési pontszám segítségével határozzuk meg. 

Az illeszkedési pontszám a két összehasonlított szimbólumsorozat hosszának és az egyenlő 

szimbólumok számának a függvénye. Legyen na , nb a két szimbólumsorozat hossza, nj az 

inegzakt illesztési algoritmus által meghatározott illeszkedő szimbólumok száma. Ekkor a p 

illeszkedési pontszám: 

 

2/)(
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nn
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=      (4.6) 

 Tökéletes illeszkedés esetén értéke 100, abszolút különbözőség esetén pedig 0. A 

gyakorlatban, két nem azonos ujjlenyomat összehasonlítása általában 0 és 25 közötti értéket ad. 

Két ujjlenyomatot akkor nevezünk azonosnak, ha az illeszkedési pontszám legalább 50 fölött van. 
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4.6 AZ ALGORITMUS GYORSÍTÁSA 

 A fentiekben leírt összehasonlítási algoritmus számítási igénye igen nagy, de bizonyos 

módszerekkel növelhetjük a hatékonyságot, és csökkenthetjük  a számítási igényt.  

 Visszatérnék a 4.4 fejezetben elmondottakra. Már megemlítettük, hogy nem minden 

esetben szükséges a másodszintű részsorozat megállapítása. Láthattuk, hogy az elsőszintű 

részsorozat olyan elemekből áll, melyek első szimbóluma valamilyen tolerancia-

intervallumban van, ezek több értéket vehetnek fel. Az elsőszintű részsorozatot olyan 

szekvenciákra oszthatjuk, melyek szimbólumainak első eleme, az α azonos. Ezek a 

szekvenciák a második paraméter szerint növekvő sorrendbe vannak rendezve és ezek képezik 

a másodszintű részsorozatok alapját, azaz minden másodszintű részsorozat egy-egy ilyen 

módon meghatározott szekvencia részhalmaza. Nevezzünk egy ilyen szekvenciát t -nek. Nagy 

a valószínűsége annak, hogy nem létezik a másodszintű részsorozat. Ha megvizsgáljuk a t 

sorozat első és utolsó elemét, amennyiben az első elem értéke nagyobb, mint a d1ai+td , 

illetőleg az utolsó kisebb mint d1ai – td, a másodszintű részsorozat keresését elvethetjük. Ha 

mégis létezne, ugyanezzel a módszerrel megvizsgáljuk, létezik e a harmadszintű. 

Másodsorban láthattuk, hogy csupán azokat az eseteket fogadjuk el, melyekben az 

illeszkedési pontszám nagyobb mint 50. Ez nagyjából azt jelenti, hogy a minutiák 50%-a 

azonos kell legyen. Tehát amennyiben az összehasonlítás során kiderül, hogy ez a pontszám 

már semmiképp sem érhető el, megszakítjuk az algoritmust.  

A 4.4 fejezetben elmondtuk, hogy a két minutiahalmazból generált összes  

szimbólumsorozat valamennyi párosítására el kell végeznünk az összehasonlítást, hiszen nem 

tudjuk, melyik a referenciaminutia. Ezt a kijelentést most egy kicsit módosítjuk. Mint 

említettük, feltételként szabtuk meg, hogy legalább a minutiapontok fele szerepeljen mindkét 

halmazban. Ez azt jelenti, hogy ha a két halmaz teljesíti ezt a feltételt, akkor a szimbólum-

sorozatok halmazának első felében már meg kellett találnunk egy olyan párosítást, melyben 

azonos a két referenciaminutia. Tehát elegendő az egyik szimbólumsorozat-halmaz elemeinek 

a felét összehasonlítani a másik halmaz minden elemével. 

Mint láttuk, a két szimbólumsorozat összehasonlításakor az első szimbólumsorozat 

bejárása lényegesen kevesebb lépést igényel, mint a másodiké, tehát érdemes a rövidebb 

sorozatot elsőként szerepeltetni, és ugyancsak érdemes a kisebb számosságú halmazból 

képzett sorozatokat felezni. 
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